
Computer vision and machine learning
for the material scientist

Lecture 7.
Deep Neural Networks

Henry Proudhon

MINES ParisTech, PSL University
Centre des Matériaux, CNRS UMR 7633, Evry, France

@ Centre des Matériaux
February 25, 2021

Outline

1 Deep Neural networks
Specificities of deep neural networks
Implementing Deep Learning in Python

2 Training a deep neural network
Solving the XOR problem
The MNIST problem
Using Keras and TensorFlow
Additional Gradient descent strategies

3 Some issues with Deep Learning

4 Summary

Contents

1 Deep Neural networks
Specificities of deep neural networks
Implementing Deep Learning in Python

2 Training a deep neural network
Solving the XOR problem
The MNIST problem
Using Keras and TensorFlow
Additional Gradient descent strategies

3 Some issues with Deep Learning

4 Summary

Recall : Feed-Forward Neural Network

hidden layersinput layer output layer

Training phase, offline, slow
SGD : iterate on each training data point
Forward pass : compute the network output
Backprop pass : compute ∇WL using the chain rule
Update rule : modify the weigths W

Prediction phase, online, fast
Predict the network output for a new unseen data point

End-to-end learning

Classical CV Image feature (human) engineered are fed to a
machine learning classifier.

Deep learnig Image features and classification are learned at
the same time !

truck

simple features

complex features

classifier

How deep is deep ?

No clear answer to this question !

As a rule of thumb : a network with more than 2 hidden layer
can be considered as deep. Before the 90s :

data sets were too small
computers were too slow
initialization was bad
activation functions were not the good ones

Today we have :
1 Faster computers
2 Highly optimized hardware (GPUs)
3 Large, labeled datasets in the order of millions of images

(for some problems)
4 A better understanding of weight initialization
5 Superior activation functions

Data preprocessing

Network convergence can be very sensitive to how your
features are distributed. So it is a good idea to remove the mean
(make it zero-centered) and normalize it (variance equals 1).

In Numpy (X is the matrix of the data, X[i] a data point) :

X -= np.mean(X, axis=0)
X /= np.std(X, axis=0)

Weights initialization

Before we can train the network, we need to initialize all W.

Biases initialisation it is common to initialize all biases to zero.

Constant initialisation (eg 0.) is bad since each neuron will
have the same input and therefore the same output and same
gradients. Training will fail, we need to break the symmetry of the
network.

Random initialisation will work for shallow networks.
Gradients scale with W so starting with very small values is not
advised. Random initialization breaks down for deep networks.

W = np.random.randn(D, H) * 0.01

Note that batch normalisation tends to reduce significantly
initialisation problems.

Xavier initialization

Random initialisation quickly break down for deep networks.
The reason for this is that the activation will quickly falls to
zero after a few layers (and so does the gradients).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
hidden layer depth

0.00

0.02

0.04

0.06

0.08

0.10

 o
f t

he
 la

ye
r a

ct
iv

at
io

n

0.4 0.2 0.0 0.2 0.4 0.4 0.2 0.0 0.2 0.4 0.4 0.2 0.0 0.2 0.4 0.4 0.2 0.0 0.2 0.4 0.4 0.2 0.0 0.2 0.4

increasing depth

A better solution :

W = np.random.randn(D, H) / np.sqrt(D)

This is called Xavier initialisation [Glorot and Bengio, 2010] and
ensure the activation on the output layer is non-zero.

For ReLU activation functions [He et al., 2015b] :

W = np.random.randn(D, H) * np.sqrt(2 / D)

Residual connections

Very deep neural networks suffer from
vanishing gradients. To alleviate this problem,
residual connections were proposed
[He et al., 2015a].

stacking layers should not degrade the
performance (think identity)
fit a residual mapping rather than the
complete transformation
since its introduction in 2015, the ResNet
architecture has become very popular

ResNet architecture

Dropout

Dropout is a form of regularization and is used to help the
network to generalize better [Srivastava et al., 2014].

Training ignore (zero out) a random fraction p of nodes
(and corresponding activations)

Testing use all activations, but reduce them by a factor p to
account for the missing activations during training

Recall from last lecture : single layer Neural Network

Efficient vectorized code using numpy.
import numpy as np

X, y = ...
w = np.random.randn(3, 1) # first layer
eta = 1e-2 # learning rate
n_epochs = 100

for t in range(n_epochs):
forward pass
y_pred = 1 + np.exp(-X.dot(w) # activation
loss = np.square(y_pred - y).sum()

backprop
grad_y_pred = 2. * (y_pred - y)
grad_W = X.T.dot(grad_y_pred * y_pred * (1 - y_pred))

update rule
w -= eta * grad_W

A 2 layer Neural Network in 15 lines of Python
Efficient vectorized code using numpy.
import numpy as np

X, y = ...
w1 = np.random.randn(3, 3) # first layer
w2 = np.random.randn(3, 1) # second layer
eta = 1e-2 # learning rate
n_epochs = 10000

for t in range(n_epochs):
forward pass
h = 1 / (1 + np.exp(-X.dot(w1))) # first layer activation
y_pred = h.dot(w2) # activation of the second layer
loss = np.square(y_pred - y).sum()

backprop
grad_y_pred = 2. * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)
grad_w1 = X.T.dot(grad_h * h * (1 - h))

update rule
w1 -= eta * grad_w1
w2 -= eta * grad_w2

Contents

1 Deep Neural networks
Specificities of deep neural networks
Implementing Deep Learning in Python

2 Training a deep neural network
Solving the XOR problem
The MNIST problem
Using Keras and TensorFlow
Additional Gradient descent strategies

3 Some issues with Deep Learning

4 Summary

Solving the XOR problem

Training phase :
XOR data set
X = np.array([[1, 0, 0],

[1, 0, 1],
[1, 1, 0],
[1, 1, 1]])

y = np.array([[0], [1], [1], [0]])

... perform learning

Prediction phase :
for (xi, yi) in zip(X, y):

h = 1 / (1 + np.exp(-xi.dot(w1)))
out = h.dot(w2)
y_pred = 1 if out > 0.5 else 0

Output :
data=[1 0 0], ground-truth=[0], out=0.001, y=0
data=[1 0 1], ground-truth=[1], out=0.999, y=1
data=[1 1 0], ground-truth=[1], out=0.999, y=1
data=[1 1 1], ground-truth=[0], out=0.002, y=0

Results

The network correctly solve the XOR problem after∼ 300 epochs.

0 200 400 600 800 1000
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

0 1
x1

0

1

x 2

XOR problem

Training a deep neural network to tackle MNIST

Results

The network easily achieves > 95% accuracy after 100 epochs.

Loss and confusion matrix

0 20 40 60 80 100
Epoch

0

200

400

600

800

1000

Lo
ss

0 2 4 6 8
predicted class

0

2

4

6

8

ac
tu

al
 c

la
ss

confusion matrix

Keras and TensorFlow

Keras is a popular, dedicated, very easy to use library to build
Deep Neural Networks.

Author It was written by François Chollet at Google (since
2015) and is now part of TensorFlow.

Backend Keras needs a backend, default is now TensorFlow
(Theano until 1.1.0)

TensorFlow Since 2019, Keras ships within TensorFlow and
may be uses directly in Python with tf.keras

Solving Mnist in Python using Keras : model

X_train, y_train, X_test, y_test = ...

define the 64-32-16-10 FC architecture using
↪→ Keras

model = Sequential()
model.add(Dense(32, input_shape=(64,),

activation=’sigmoid ’))
model.add(Dense(16, activation=’sigmoid ’))
model.add(Dense(10, activation=’softmax ’))

train the network
sgd = SGD(0.01)
model.compile(loss=’categorical_crossentropy ’,

optimizer=sgd, metrics=[’accuracy ’])
H = model.fit(X_train, y_train,

validation_data=(X_test, y_test),
epochs=200, batch_size=10)

Solving Mnist in Python using Keras : training

training network...
Train on 1347 samples, validate on 450 samples
Epoch 1/1000
1347/1347 [==============================] - 1s 916

↪→ us/sample - loss: 2.4406 - accuracy: 0.0846
↪→ - val_loss: 2.3521 - val_accuracy: 0.1044

Epoch 2/1000
1347/1347 [==============================] - 1s 501

↪→ us/sample - loss: 2.3500 - accuracy: 0.0943
↪→ - val_loss: 2.3172 - val_accuracy: 0.0933

...

Epoch 1000/1000
1347/1347 [==============================] - 1s 555

↪→ us/sample - loss: 0.0261 - accuracy: 0.9993
↪→ - val_loss: 0.1426 - val_accuracy: 0.9667

Results

The network achieves > 97% accuracy after 300 epochs, 99.9%
after 1000 epochs.

0 50 100 150 200 250 300
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

/A
cc

ur
ac

y

Training Loss and Accuracy
training loss
validation loss
training accuracy
validation accuracy

Problems with SGD

1 Poor conditioning (very
different values of the
gradient in different
directions)

2 Local minima and saddle
points (problem not
convex)

3 Noise in the gradient from
one iteration to the next
(due to the stochastic
character)

NB : All of these are likely to
happen in very high
dimensions.

Momentum

Recall the vanilla SGD :

W ←W − η∇WL

SGD + Momentum :

v← ρv + ∇WL

W ←W − ηv

Build up velocity as a running mean during gradient
descent (help escape local minima and saddle points)
ρ is equivalent to some friction that slows down and
decreases the momentum (ρ = 0.9)
v = 0 at the beginning
Very simple solution that kind of solves all 3 problems

Nesterov acceleration

Nesterov accelerated gradient (NAG) or Nesterov Momentum
Idea : step in the direction of the velocity, evaluate the gradient
there and then update the weights.

v← ρv + ∇WL(W + ρv)

W ←W − ηv

Act as a corrective update to the momentum method.

NB : many more method exist like Adagrad, RMSProp, Adam,
. . .

Contents

1 Deep Neural networks
Specificities of deep neural networks
Implementing Deep Learning in Python

2 Training a deep neural network
Solving the XOR problem
The MNIST problem
Using Keras and TensorFlow
Additional Gradient descent strategies

3 Some issues with Deep Learning

4 Summary

Advsersarial Attacks

correctly
classified difference classified

as ostrich
Adversarial examples generated for AlexNet. All images are
recognized as ostrich [Szegedy et al., 2013].

Robust Physical Perturbations attacks (RP2)

Design realistic attacks (graffitis) on stop signs so they are
classifued as a Speed Limit 45 sign.

Misclassification in 100% of the images obtained in lab settings,
and in 84.8% of the captured video frames obtained on a
moving vehicle [Eykholt et al., 2018].

Out of context data points

The system’s cameras and radars did not detect the semi-truck
that was crossing the driver’s path before the fatal collision.

Validation of deep learning predictions

So far, no formal validation proof can be
made for deep learning predictions. Lots
of work being done on explainable AI.
Are we ready to trade performance with
explainability ?

Mostly experimental using test data and
cross validation (statistical validation).
But then how can we assess the
coverage of possible inputs ? This is a
big open question.

Validation of the training data (avoid
data poisoning)→ Need for traceability.
Another big question.

Other ethical issues in deep learning science

A race to the largest network (essentially limited by your
number of GPUs)
Reproducibility highly questionable (but this is true for
other sciences as well)
Ecological cost :(

Contents

1 Deep Neural networks
Specificities of deep neural networks
Implementing Deep Learning in Python

2 Training a deep neural network
Solving the XOR problem
The MNIST problem
Using Keras and TensorFlow
Additional Gradient descent strategies

3 Some issues with Deep Learning

4 Summary

Summary

We have reviewed how deep learning extend the principles of
machine learning and can achieve great performances.

Large networks can be constructed easily and training with
supervised learning using backprop
Multi layered networks have no problem dealing with
non-linearly separable data sets.
State of the art tools are now available to the average user
(such as the material scientist)
Many hyper-parameters have still to be tuned by try-error /
grid-search / expert knowledge.

Beside interesting results, when working with imaging data
sets sensitive to translation, rotation, occlusion, intra-class
variation, a special type of Feed-forward network is desirable :
Convolutional Neural Networks.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T., and Song, D.
(2018).
Robust physical-world attacks on deep learning models.

Glorot, X. and Bengio, Y. (2010).
Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS’10). Society for
Artificial Intelligence and Statistics.

He, K., Zhang, X., Ren, S., and Sun, J. (2015a).
Deep residual learning for image recognition.
CoRR, abs/1512.03385.

He, K., Zhang, X., Ren, S., and Sun, J. (2015b).
Delving deep into rectifiers : Surpassing human-level performance on imagenet classification.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout : A simple way to prevent neural networks from overfitting.
Journal of Machine Learning Research, 15 :1929–1958.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2013).
Intriguing properties of neural networks.

	Deep Neural networks
	Specificities of deep neural networks
	Implementing Deep Learning in Python

	Training a deep neural network
	Solving the XOR problem
	The MNIST problem
	Using Keras and TensorFlow
	Additional Gradient descent strategies

	Some issues with Deep Learning
	Summary

