REWRITING THE DCT PRE-PROCESSING PIPELINE

João P C Bertoldo

15th April 2021

COPIL BIGMECA April 2021

Materials Center @ Mines Paristech - PSL University ID11 @ The European Synchrotron Radiation Facility (ESRF)

WHAT IS DCT?

DCT

X-ray Diffraction Contrast Tomography

- Acquire transmitted and diffracted beam
- Richer local information: individual grains and their plane directions

 $\leftarrow \mathsf{click}$

Figure 1: DCT setup schematic. Multiple 2D images acquired from different angles relative to the specimen. Credits: Wolfgang Ludwig.

HOW IS IT DONE?

FROM REAL WORLD TO 3D CRYSTAL STRUCTURE

Main steps of the DCT reconstruction

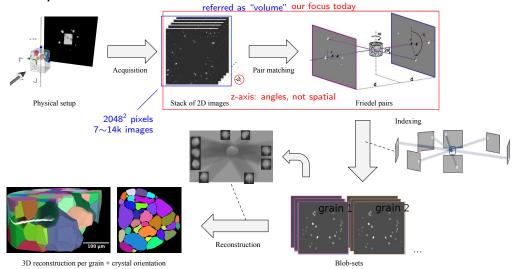
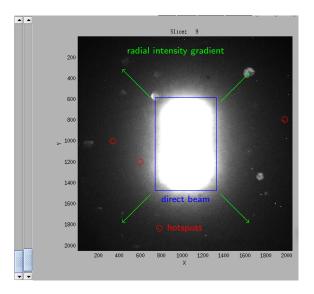



Figure 3: DCT reconstruction pipeline. Credits: Wolfgang Ludwig (modified).

Spotting the spots

FROM RAW SIGNAL TO FRIEDEL (UNPAIRED) 2D-BLOBS

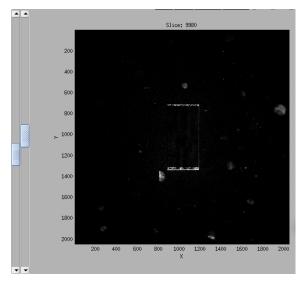

- Pre-process the image
- Segment & extract blobs

Figure 4: Raw DCT images.

João P C Bertoldo

Spotting the spots

FROM RAW SIGNAL TO FRIEDEL (UNPAIRED) 2D-BLOBS

• Segment & extract blobs

Figure 5: Preprocessed DCT image.

Spotting the spots

FROM RAW SIGNAL TO FRIEDEL (UNPAIRED) 2D-BLOBS

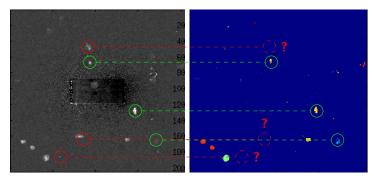


Figure 6: Blobs segmentation.

- Pre-process the image
- Segment & extract blobs

ZOOMING IN

SO FAR

- overall process
- conceptual steps of the preprocessing/segmentation pipeline
- image characteristics

Now

- how things are actually done today
- main concrete operations

THEN

- why it works, pros and cons
- limitations and opportunities: where we're going

PREPROCESSING

DIRECT BEAM REMOVAL

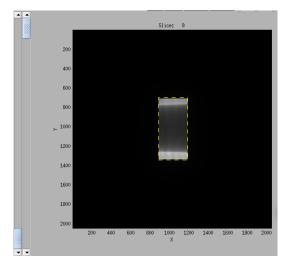


Figure 7: Direct beam selection.

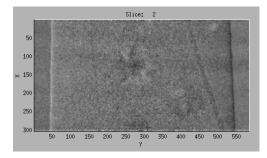


Figure 8: Direct beam preprocessed.

Direct beam is pre-processed separately:

- manual selection (Fig. 7)
- sensor offset removal (image without sample)
- spatial median removal
- on normalization

PREPROCESSING

BACKGROUND

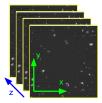


Figure 9: Stack of 2D images.

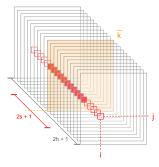


Figure 10: Background.

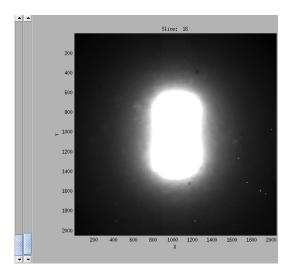
VOLUME IMAGE

- W: width, along x, indexed by $i \in 1 \dots W$
- *H*: height, along *y*, indexed by $j \in 1 \dots H$
- D: depth^a, along z, indexed by $k \in 1 \dots D$
- I : image, a 3D grid of shape (W, H, D), where $I_{i,j,k} \in [0, V]$

^anumber of rotation steps = number of images

$$\mathsf{range}(\mathsf{k},\,\mathsf{w}) = \{\mathsf{k}\prime \in 1 \dots D \mid \mathsf{max}(0,\,\mathsf{k}-\mathsf{w}) \leq \mathsf{k}\prime \leq \mathsf{min}(\mathsf{V},\,\mathsf{k}+\mathsf{w})\}$$

Background: $B_{i,j,\overline{k}}^{h} = \operatorname{median}_{k' \in range(\overline{k},h)} I_{i,j,k'}$


Image without background: $I_{i,j,k\prime}^* = I_{i,j,k\prime} - B_{i,j,\overline{k}}^h$ for all $k\prime \in range(\overline{k}, s)$

Parameters: h = 250 and s = 25 $W = H \approx 2.000 \rightarrow 4.000.000$ pixels/background $D \approx 10.000 \rightarrow 10.000/2s = 10.000/50 = 200$ backgrounds $\therefore 4.000.000 \times 200 = 8 \times 10^8$ medians of 250 values each...

João P C Bertoldo

Preprocessing

BACKGROUND AND HOTSPOT REMOVAL

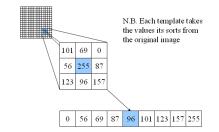


Figure 12: Median filter (*illustration*). Source link. Credits: Larry Bank.

- substract background (Fig. 11)
- applied 2D median filter (Fig. 12) on each slice

Figure 11: Background image.

BLOB SEGMENTATION

Double threshold approach + extra filters

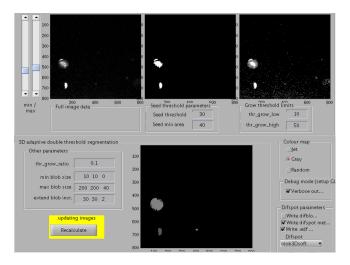


Figure 13: Double threshold + extra blob filters.

- choose a minimum threshold v_{min}
- pick all voxels $I_{i,j,k} \ge v_{min}$
- choose a tolerance $\tau \in [0,1]$
- choose clipping limits c_{min} and c_{max}
- for each blob b
 - find its maximum intensity v^b_{max}
 - also pick connected voxels s.t.

 $I_{i,j,k} \geq \tau v_{max}^b$

- retain those that $c_{min} \leq I_{i,i,k} \leq c_{max}$
- ignore blobs that are
 - too small or too big in XY
 - too long in Z to the direct beam

STATE OF THE PLAY

Pre-processing

- Why is this (simple) background removal well adapted?
 - Link with the physical problem
 - Spots will pop up and go way, but the background is always there.
- Pains?
 - Manual direct beam selection
 - Messy parametrization
 - A lot of computation: billion-order medians i.e. sort operations
 - Why not a a single or spatially-batched median? Because of the radial glow.
 - Why not a single median per pixel position? Beam intensity variation.
- Opportunities
 - An unexploited redundancy: overlay of the pixel-wise medians
 - Goal: speed up the process ideally $30 \sim 40$ images/sec
 - Leads?
 - SLURM
 - Numba
 - * GPU-based computation? (e.g. TensorFlow)
 - Alternative, better solutions?

STATE OF THE PLAY

SEGMENTATION (DOUBLE THRESHOLD)

- Nice features
 - Notion of locality
 - Adapted to the heterogeneity inter/intra-crystal
- Pains
 - Manual, time-consuming parametrization
 - Needs filtering (XY-tiny and z-long blobs) = +parameters
 - Slow
 - \star A region growth per blob (pprox 100 thousand)
 - $\star\,$ A few hours of processing on \leq 10 jobs
 - $\ast\,$ (recall) My previous deep learning project: \approx 50 min on 2 GPUs on a similar scale
 - Further acceleration (of a deep learning method): RepVGG (Ding et al., 2021)

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

João P C Bertoldo, 15th April 2021

COPIL BIGMECA April 2021

