

26/08/2021

Mastère DMS

Identification de lois de comportement en plasticité cristalline à l'aide de méthodes de caractérisation locale avancées

Kenza ZOUGAGH

Encadrants industriels : Stéphane GOURDIN, Florent COUDON

Encadrants académiques : Henry PROUDHON, Clément RIBART

Nanoindentation instrumentée

- Simulation numérique
- Essais in situ
- Actions

Nanoindentation instrumentée

- 2 Simulation numérique
- Essais in situ

Actions

Nanoindenteur NHT³ de la marque Anton Paar utilisé à Safran.

Indents au milieu de chaque grain

Sélection de grains d'orientations cristallographiques différentes;

Plusieurs indentations par grain pour répétabilité;

Détermination de E_{hkl} et des C_{ij} .

Méthode d'Oliver & Pharr [Oliver and Pharr, 1992]

(1)

Comportement lors de la décharge décrit par une loi de type puissance :

$$F = B_{OP}(h - h_r)^{m_{OP}}$$

avec F la charge instantanée, h la profondeur d'indentation, h_r la profondeur résiduelle d'indentation, B_{OP} et m les paramètres de fit entre 40% et 98% de la courbe de décharge.

La raideur S est obtenue en dérivant F et en l'évaluant en h_m :

$$S = \left(\frac{dF}{dh}\right)_{h=h_m} = m_{OP}B_{OP}(h_m - h_r)^{m_{OP}-1}$$
 (2)

Calcul de l'aire de contact :

$$A = \pi a^2 = 2\pi R h_c \tag{3}$$

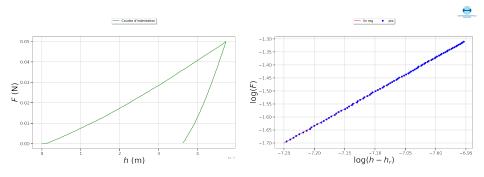
Et h_c :

$$h_c = h_m - \varepsilon \frac{F_m}{S}$$

avec ε un terme lié à la géométrie de la pointe (ici $\varepsilon=0.75$).

La module d'élasticité réduit s'écrit enfin :

$$E_r = \frac{1}{\beta} \frac{\sqrt{\pi}}{2} \frac{S}{A}$$

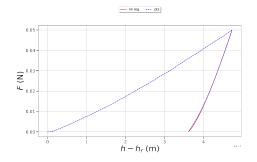

(5)

(4)

avec $\beta = 1$ pour un indenteur sphérique.

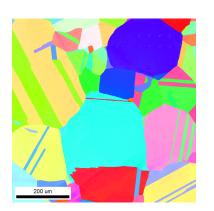
Méthode d'Oliver & Pharr [Oliver and Pharr, 1992]

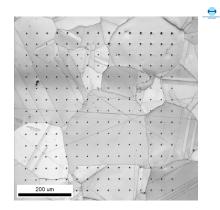
Fit entre 40% et 98% de la courbe de décharge;


Mettre en log pour linéariser;

Régression linéaire pour déterminer m_{OP} et B_{OP} ;

$$\frac{1}{E_r} = \frac{1 - \nu_i^2}{E_i} + \frac{1}{E_{hkl}}$$
, avec E_{hkl} le module d'Young directionnel.

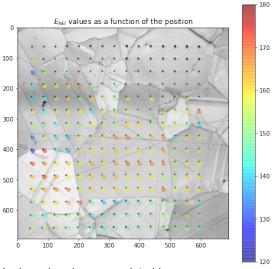



$$F = B_{OP}(h - h_r)^{m_{OP}}$$

 $m_{OP} = 1.31$
 $B_{OP} = 67 \cdot 10^6$
 $E_{hkl} = 156.4 \pm 10.33 \text{ GPa}$

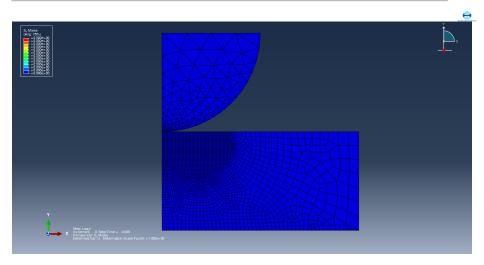
	h_m	F_m	h_p	A_p	m	В	S	E_{hkl}
count	1.820000e+02	182.000000	1.820000e+02	1.820000e+02	182.000000	1.820000e+02	1.820000e+02	182.000000
mean	4.574621e-07	50.150514	3.462637e-07	1.173830e-11	1.269418	9.963481e+08	5.528406e+05	155.102866
std	6.558099e-09	2.978991	1.339154e-08	4.116264e-13	0.114871	1.235527e+10	1.167365e-09	10.326910
min	4.329000e-07	49.629600	2.100000e-07	6.970000e-12	0.399069	3.488833e+01	5.528406e+05	95.264806
25%	4.539000e-07	49.930425	3.400000e-07	1.167000e-11	1.213923	1.423711e+07	5.528406e+05	148.961351
50%	4.573500e-07	49.934850	3.500000e-07	1.178500e-11	1.264199	3.113151e+07	5.528406e+05	155.684190
75%	4.616750e-07	49.937675	3.500000e-07	1.189000e-11	1.324715	7.669614e+07	5.528406e+05	160.796619
max	4.768000e-07	90.116600	3.900000e-07	1.243000e-11	1.853276	1.667520e+11	5.528406e+05	203.239191

AD730 : EBSD de la zone indentée


Matrice de nanoindents 15x15 :

Paramètres initiaux : $\Delta x = 40~\mu \text{m}$; $\Delta y = 40~\mu \text{m}$; $R_i = 5~\mu \text{m}$; $F_m = 50~\text{mN}$.

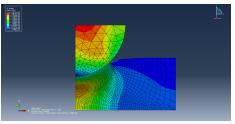
Environ 50 courbes non exploitables.

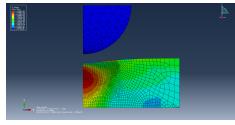

Points non indexés = données non exploitables; Globalement homogène grain par grain.

Nanoindentation instrumentée

Simulation numérique

- Essais in situ
- Actions





Simulation de l'essai de nanoindentation en 2D sur Abaqus.

Simulation

Variation des paramètres de loi de comportement (R_0 , C et D) et comparaison des résultats pour E;

Dépouillement avec la méthode d'Oliver & Pharr;

Coefficient de friction à 0.5, si coef =0 alors pas de convergence;

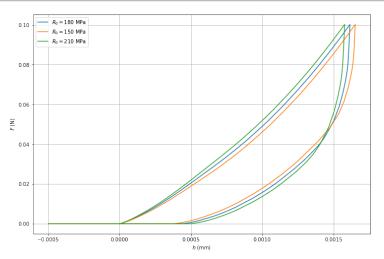
Simulation initiale

$$E=113$$
 GPa

$$\nu = 0.3$$

$$p = 0.5$$

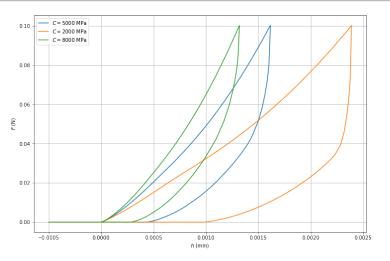
 $n = 20$


$$K = 10$$

$$R_0 = 180 \text{ MPa}$$

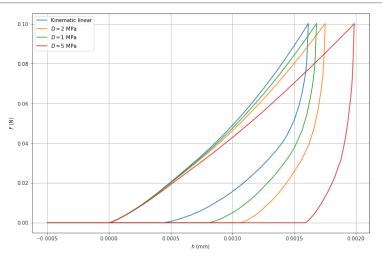
$$C = 5000 \text{ MPa}$$

Variation de R_0


$$E_{150} = 36.5 \text{ GPa}$$

$$\textit{E}_{210} = 61.4 \text{ GPa}$$

Variation de C

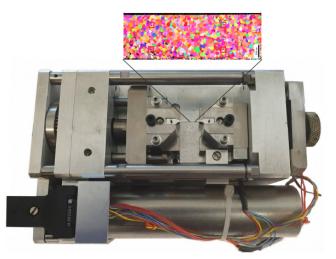


 $E_{5000} = 49.8 \text{ GPa}$ $E_{2000} = 125.7 \text{ GPa}$ $E_{8000} = 47.6 \text{ GPa}$

Variation de D

$$\textit{E}_2 = 98.6 \text{ GPa}$$

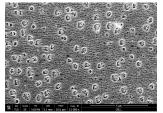
$$E_1 = 77.6 \text{ GPa}$$

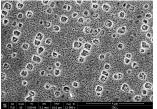

$$E_5=123.0~\mathrm{GPa}$$

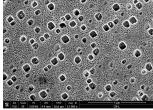
- Nanoindentation instrumentée
- Simulation numérique

- Essais in situ
- Actions

Préparation des échantillons

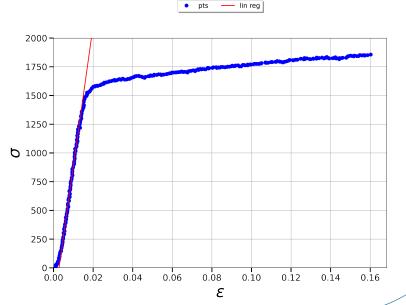



Attaque chimique à la silice colloïdale + oxydation 350° C pendant 1h;


Précipités γ' révélés dans la matrice γ ;

4 chutes utilisés pour la validation du protocole de polissage final pour les éprouvettes de traction ;

Echantillons	CN1	CN2	CN3	CN4
Temps OPS	19h	4h	7h	10h


Compromis entre la révélation des précipités nanométriques et l'intensité de l'attaque sur la surface;

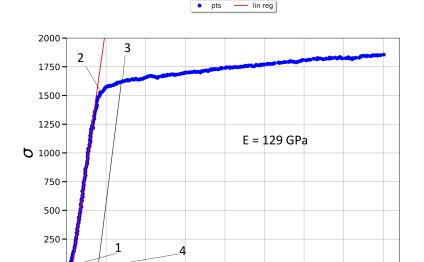
Temps retenu: 7h.

Courbe de traction de référence de l'AD730

Courbe de traction de référence de l'AD730

0.00

0.02


0.04

0.06

0.08

ε

0.12

0.14

0.16

0.10

- Nanoindentation instrumentée
- Simulation numérique
- Essais in situ

Actions

Pour la suite

- Nanoindentation :
 - \checkmark Matrice d'indentation 15 \times 15 sur le T40;
 - ✓ EBSD AD730 + T40;
 - ✓ Analyse O&P;
 - ☐ Identification des constantes élastiques
- Essais in situ:
 - ✓ Essai de référence avant le MEB in situ :
 - \square Essais du 31/08 au 02/09;
 - ✓ Régler le problème du polissage à l'OPS;
 - ☐ Scans paliers de chargement définis à partir de courbe de référence ;
 - ☐ Corrélation d'images sur VIC2D
- Simulation :
 - ☐ Simulation essai de nanoindentation sur vraie loi matériau : simuler 3 orientations cristallographiques et comparer avec les résultats expérimentaux.
- Rapport final : au plus tard le 16/09;
- Soutenance finale le 29/09.

MERCI DE VOTRE ATTENTION