

Modelling the influence of clustered defects on HCF properties of Ni-based superalloys

02/02/2023

Arjun Kalkur MATPADI RAGHAVENDRA

Under the supervision of,

Henry PROUDHON, Vincent MAUREL, Lionel MARCIN, Centre des Matériaux Centre des Matériaux Safran Aircraft Engines

Preliminary results

Clustered defects

Introduction

Feature variable

3

Kitagawa- Takahashi diagram: Fatigue life vs defect size

Introduction: Global strategy

Monte-Carlo Approach

Numerical simulations followed by statistical analysis

Estimate influence of defect characteristics on HCF

Develop a model on the basis of statistics of defects, CND criterions via a probabilistic approach

Image-based FE model to estimate fatigue life

Experimental campaign

Material: Inconel 100 Test temperature: 750 °C Load ratio: R = 0 Grains: Equiaxed

N°	Grade	Classe ressuage	Cycles	Crack-intiation site	
А	Grade 5	Classe <10	8 096	Interne	
В	Grade 5	Classe <10	77 155	Interne	
С	Grade 6	Classe <10	39 638	Subsurfacique	
D	Grade 6	Classe 20	31 343	Débouchante	

All samples failed in the zone of clustered defects due to one critical defect

SAFRAN

Image-based FE model to estimate fatigue life

Experimental campaign

Numerical campaign

SAFRAN

SAFRAN

-> Synthetic Microstructures

Preliminary results

Generative Adversarial Networks

Functionalities

- Generation of data that resembles the real data
- Image transformation from • one dimension to other

Generative Adversarial Networks

Functionalities

- Generation of data that resembles the real data
- Image transformation from • one dimension to other

 $\min_{G} \max_{D} V(D,G) = \min_{G} \max_{D} (\mathbb{E}_{x} [\log(D(x))] + \mathbb{E}_{z} [\log(1 - D(G(z)))]$

Generative Adversarial Networks

Generative Adversarial Networks: Loss history

Modifications – GAN :-

- One sided label smoothing addition of noise to labels
- Generator trained k times than discriminator to maintain balance between D and G

Generative Adversarial Networks: Examples

Spatial point pattern (SPP) Analysis

Ripley's K-function :-

K-function

Second order moment function that includes all distance pairs in a spatial pattern

 $K(d) = \lambda^{-1} E$ (number of points within distance d of a single arbitrary event)

Where λ →intensity or mean number of events in unit space In 3-D λ = Number of points / Volume E → Expected number of events in a length r K(d) → K-function

Sample A 14 Sample B Sample C 12 Sample D 6 Poisson process 10 5 The states are K function 8 6 3 4 2 2 1 0 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 distance (mm)

Compare spatial pattern analysis with poisson process to investigate local clustering

Equation :-

Where, N \rightarrow Number of points $I \rightarrow \begin{cases} 1, & \text{if } r_{ij} < d \\ 0, & \text{otherwise} \end{cases}$

Expected number of points

SPP Analysis: Neyman Scott Process

- \Rightarrow Parent defect (type 1)
- \Leftrightarrow \rightarrow Child defect (type 2)

SPP Analysis: Neyman Scott Process

Ripley's K function for
two types of defect given as *K*₁₁ and *K*₂₂

 $K_{12}(d) = (\lambda_1 \lambda_2 V)^{-1} \sum_{i=1}^{N_1} \sum_{j=1}^{N_2} I(r_{ij} < d)$

Interaction between two processes : Cross K-function

Where, λ_1 and λ_2 are intensities of type 1 and 2 N1 and N2 are number of points of type 1 and 2

Bivariate K-function

 $K(r) = \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$

Introduction of parameter θ

- θ corresponds to defect size.
- Defects are classified with respect to θ as either type 1 or type 2
- For e.g., if $\theta == 0.6$ mm, all defects with size below θ belongs to type 1 and the rest type 2.

Spatial point pattern Analysis

- Clustering pattern observed in all samples
- In-homogenous process required for generation

- Defects larger than 0.6 mm are added first
- Defects smaller than 0.6 mm are added around larger defects – Neyman-Scott process

Other defects have

no influence on crack-initiation life

COMPLETE CHAIN

Examples

b) Real microstructure

Synthetic microstructure – Global statistical validation and comparison

Sphericity vs Aspect ratio

Spatial point pattern : cross K-function

Synthetic microstructure – Global statistical validation and comparison

Defect size distribution for 5 synthetic microstructure

PCC of synthetic and real microstructure

Synthetic

For each synthetic sample, the defect size distribution changes as per shape parameter

Generalized extreme value distribution:

 $Gev = e^{-(1-cx)^{1/c}}(1-cx)^{1/(c-1)}$

 $c \rightarrow$ Shape parameter

C depends on number of defects of respective sample

For each synthetic sample, the defect size distribution changes as per shape parameter

Total volume of cluster of generated samples

 $o \rightarrow$ Synthetic samples

Generalized extreme value distribution: $(1 - ar)^{1/c}$

 $Gev = e^{-(1-cx)^{1/c}}(1-cx)^{1/(c-1)}$

 $c \rightarrow$ Shape parameter

C depends on number of defects of respective sample

Preliminary numerical results

Number of cycles to failure: Numerical vs experimental correlation

Dissipated plastic strain energy per cycle

 $\Delta W_p = A(N)^k$ where A and k are constants.

Underlying assumptions of the criteria being: The crack is initiated on a defect with maximum dissipation at stabilized stress loop **Ref:** V. Maurel et al (2009)

Volumetric homogenization

$$\Delta W_{p,avg} = \frac{1}{V} \int_{V} \Delta W_{p}. \, dV$$

Number of cycles to failure: Numerical vs experimental correlation

Dissipated plastic strain energy per cycle

 $\Delta W_p = A(N)^k$

where A and k are constants.

Underlying assumptions of the criteria being: The crack is initiated on a defect with maximum dissipation at stabilized stress loop

Radius of 150 µm was chosen for stress homogenization after comparison with experimental results

Fit to experimental results to find parameters A and k

Α	k
147.49	-0.813

Prediction of number of cycles to failure

Failure criterion - Estimations

Wohler curve for different defect sizes

Defect size C > B > A i.e., fatigue limit decreases with respect to defect size

Relationship between fatigue limit and defect size:-

$$\sigma_D = \frac{C(H_v + 120)}{\sqrt{Area}^{1/6}} (\frac{1-R}{2})^{\alpha}$$

Where, Hv is the Vickers hardness, R the load ratio, \sqrt{Area} size of defect and σ_D , the fatigue limit

C = 1.56 for internal defect and 1.43 for surface defect.

Synthetic samples – Simulations

From fatigue reduction factor like SCF:

• Fatigue reduction factors from the experiments can be defined as,

$$\alpha_{f} = \frac{\sigma_{amp,healthy} |@ N cycles}{\sigma_{amp,samples} |@ N cycles}$$

$$\sigma_D = \frac{\sigma_{D,healthy}}{K_f}$$

• Fatigue limit reduces as much as k_f

Fit an exponential law for number of cycles to failure – **Basquin law**

$$\frac{\sigma}{\sigma_D} = C * (N)^b$$

Synthetic samples – Simulations

Assuming Fatigue reduction factor == Stress concentration factor, As in the case of notches

Stress concentration factor measured as,

$$K_t = \frac{\sigma_{local}}{\sigma_{nominal}}$$

Synthetic samples – Simulations

Assuming Fatigue reduction factor == Stress concentration factor, As in the case of notches

Introduction

Preliminary numerical results

Conclusions and perspectives

32

- Samples of IN100 fail at the zone of clustered defects
- Synthetic microstructures can exactly mimic real samples and can be used to create a large database of mechanical response
- It is possible to generate synthetic microstructure of particular ASTM grade
- The cluster volume has a direct influence on fatigue due to high probability of large defects in the cluster
- An analysis similar to sensitivity analysis can be done using synthetic microstructure to estimate influence of cluster volume, thickness etc on stress gradients
- Monte carlo kind of approach to predict probable fatigue life based on cluster characteristics
- Experimental tests of more samples to estimate crack initiation

Merci!! Thank you for your attention

Back-ups

Volume of defects larger than 0.6mm is specific to ASTM grade.

Hence a fit is constrained here on the volume of defects

ASTM Grade – Synthetic samples

Sample	Area (in mm2)	Volume of defects in cluster	Number of defects	/
Grade 5	1.47			
2L1	1.0	0.48	48	/ /
2P1	1.2	0.55	88	
Grade 6	2.21			
2R1	2.99	0.88	64	
2S1	1.98	0.76	118	

Less number of defects but more larger defects

- Two different distributions for each grade
- By constraining volume and using respective distribution of ASTM grade, synthetic samples respecting grades are generated

More number of defects but less larger defects

PSL 🔀 **MINES PARIS**

Beer-Lambert Law of X-ray intensity :

For small discretized thickness dx, $I = constant * \int_0^L dx$ $L \rightarrow$ Length of the material $I \rightarrow$ Intensity

 $I = constant * \sum_{k=1}^{L} dx$

Image of sample

Summation in direction perpendicular to axis for Radiography

Virtual Radiography

ASTM norm 1/8 in (3mm) – Spongeous Shrinkage

- Homogeneous Radiography examples for a thickness of 3mm and can be applied for a thickness of upto 6mm
- Image resolution of 100µm
- Different greyscale intensity

- Apply correction factor to transfer cylinder into a plate
- Resize as per the resolution of ASTM examples
- Greyscale intensity matching by Boolean operations

ASTM grade - Prediction

Shannon entropy: -

$$H(X) = -\sum_{x \in X} p(x) log_b(x)$$

 $X \rightarrow$ Image

 $x \rightarrow$ each greyscale value between 0-255

100

grey value

80

120

140

Entropy = 5.5

60

40

Max entropy @ uniform distribution = 8.0

ASTM grade - Prediction

ASTM grade - Prediction

Multiple iterations needed so that the measurements are constant

B5

B4

Perfect predictions for all samples except one

Fatigue Reduction factor

- Fatigue reduction factors from the experiments can be defined as, $k_f = \frac{\sigma_{amp,healthy} |@ \ N \ cycles}{\sigma_{amp,samples} |@ \ N \ cycles}$
 - Fatigue limit reduces as much as k_f

• By numerical approach, stress concentration factors are the fatigue reduction factors such that, $\sigma_{D} = \frac{\sigma_{D,healthy}}{\sigma_{D}}$

$$\overline{k_D} = \frac{1}{k_{t,critical}}$$

With the assumption that, $k_t = k_f$

Ref: Matpadi Raghavendra et al (2022)

